How To Successfully Use Gated Clocking
In an
ASIC Design

Darren Jones

MIPS Technologies, Inc.

dj@mips.com

ABSTRACT

Gated clocking isatrue silver bullet for hardware designers. Using this technique, engineers can
improve all three major performance metrics of acircuit: speed, area, and power. Unfortunately,
EDA tools have traditionally lacked support for gated clocks. These limitations have relegated
clock gating to the full-custom design community. However, new featuresin synthesis and static
timing analysis tools have brought gated clocking to mainstream ASIC designers.

This paper discusses the pitfalls that still exist to using gated clocksin an ASIC design.
Furthermore, it suggests methodol ogies and workarounds that can be used to avoid these
problems so that gated clocking can be used successfully. The paper explains how gated clocking
impacts the following areas: logic synthesis, static timing analysis (STA), automatic test-pattern
generation (ATPG), clock tree synthesis, and standard-cell library design.

1.0 Description of Problem

ASIC designers primarily use positive edge-triggered D flip flops to generate registers and/or
storage elements. These flip flops are clocked every cycle; if they need to hold their previous
value, arecirculating MUX circuit istypically used. Figure 1 shows this circuit.

Figure 1. Recirculating MUX Schematic

0
> o Q[MSB:LSB]
D[MSB:L SB] L
GATE A
CLK

Whilethiscircuit is conceptually simple, it can beimproved upon in several ways. Figure 2 shows
afunctionally equivalent circuit using agated clock. Thiscircuit is higher performance because it
removes the MUX from the timing-critical data input to the flops. Removing these MUXes also
saves area. Finally, thiscircuit islower power since the flops are not clocked in cyclesthey do not
need to be clocked.

NOTE: There are many possible ways of implementing gated clocking. However, most can be
generalized to the circuit in Figure 2.

Figure 2. Gated Clocking Schematic

D[M SB:L SB] D Q_Q[MSB:LSB]
GATE
b Q GATE_PH2 A
GN
GCLK
CLK atch
CLK
CLK nand

The remainder of this paper uses this circuit as abasis for discussion, so a detailed explanation of
the logic is needed. In this circuit, the positive pulse of the clock signal is either enabled or
disabled by the gate signal. Thus, in any cycle when GATE is deasserted low, GCLK will remain
low and no positive edge will be propagated to the downstream flip flops. The transparent-low

SNUG Boston 2002 2 Successful Gated Clocking

latch is used to hold the gate stable over the positive pulse of CLK in order to prevent clock
glitching. In order to be glitch free, there is a setup and a hold requirement at the NAND gate.

Figure 3. Clock Glitch Setup Check

CLK 4/ \ —[v
GATE
CLKIatch
GATE_PH2 -
-)SETUP CHECK
CLK hang <f
GCLK / \

Figure 3 shows the waveform for analyzing setup time checks. In this case, GATE changes latein
the cycle. The setup requirement occurs at the positive edge of the clock at the NAND gate,
CLK hang- The setup check analysis must use the following timing:

» Theclock path startsat CLK and ends at the NAND gate. The timing must be for delays of the

positive edge of the clock.

» Thedatapath starts before GATE, which isitself generated from flip-flops and logic clocked by
the positive edge of CLK, goesthrough the latch (D->Q), and ends at the NAND gate. Thetiming
must be for either positive edge or negative edge of GATE, whichever islonger.

Note that in this analysis, the latch is open and therefore, can be thought of as ssimply a delay
element in the path. Ideally, this path would not be analyzed as a latch path.

Figure4. Clock Glitch Hold Check

CLK 4/ \ / \

GATE

CLKIatch

GATE_PH2 i

HOLD CHECK
CLKnand i L -
GCLK / \

Figure 4 shows the waveform for analyzing hold time checks. In this case, GATE changesearly in
the cycle, during the positive pulse of the clock. Since GATE_PH2 must be stable over the entire

SNUG Boston 2002 3 Successful Gated Clocking

Administrator
高亮

Administrator
高亮

positive pulse of the clock, it must have net positive hold time against CLK ,,,4- Thereisarace
here because GATE_PH?2 is also launched from the negative edge of the clock, which opensthe
latch. The hold check analysis must therefore use the following timing:

» Theclock timing path starts at CLK and ends at the NAND gate. The timing must be for delays
of the negative edge of the clock.

» Thedatatiming path starts at CLK, goes through the latch (GN->Q), and ends at the NAND
gate. Thetiming must be for the negative edge of the clock to the latch and then for either positive
edge or negative edge of GATE_PH2, whichever is shorter.

It isadvantageousif CLK 4., iSalittle later than CLK .4 Since thiswould give additional hold
time margin without impacting the setup check.

2.0 Gated Clocksand Synthesis

Synopsis synthesis tools do have clock glitch checks built in. But, they sometimes do not do the
correct analysis. However, the optimization algorithm is robust enough to overcome this problem
and still achieve optimal results. This section explains how all this works.

2.1 Enabling Clock Glitch Checking

First of all, you must enable clock glitch checks since they are disabled by default. To enable
clock glitch checks, issue the following command (TCL):

set _cl ock_gating_check -setup $setup_val -hold $hol d_val

Where:

$set up_val isthe amount of setup needed at the NAND gate on the datainput to allow the
output to be glitch free.

$hol d_val isthe amount of hold time needed at the NAND gate to alow the output to be
glitch free.

NOTE: The above values should be proven using SPICE simulations.

2.2 Setup Time Checks

Synopsys tools (Design Compiler, Physical Compiler, and Primetime) recognize the latch in the
gating circuit and assume thisis alatch path. The latch analysis algorithm divides the setup
analysisinto two parts, which | call frontside and backside paths:

Frontside Path. Thisisthe pathin front of the latch. It includesall of the gating logic and ends at
the D input of the latch. It isanormal logic path included in the CLK path group.

Backside Path. Thisisthe path in back of the latch. It starts at the latch output and ends at the
NAND gate. This path is a clock gating check path.

Synopsys' latch analysis algorithm will first analyze the frontside path. 1t will borrow time across
the latch so that the frontside path can meet timing. Then, it analyzes the backside path given the

SNUG Boston 2002 4 Successful Gated Clocking

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

Administrator
高亮

amount of borrowing it did on the frontside. What this tends to do is leave violations on the
backside path, even though the frontside path appears to be meeting timing.

While this algorithm does work well for generic latch-based designs, it is exactly the opposite of
what is needed for the clock gating circuit. Since the backside path is actually a clock glitch
check, it should take priority over the frontside path, which is anormal logic path. The analysis
should first time the backside path, then set the borrowed time to the maximum available time
such that there are no clock glitches. Then, the frontside path will correctly reflect the slack on the
entire path. Thisis exactly what you want, since the synthesis tool cannot synthesize any logic in
the backside path anyway.

In spite of the above analysis problems, the synthesistools will try to improve the frontside path,
even if it appears to meet timing. Thanks to the latch optimization agorithm, the tool recognizes
that afailure in the backside path can be improved by optimizing the frontside path. However,
even this feature may not be enough to get correct results. In the cases where thereis afailure on
both the frontside and backside paths, the total path failure (the sum of frontside failure and
backside failure), will be split into two parts. Thiswill mask what may be one of the most critical
paths in the design and the tool may not select these paths for optimization since separately, they
do not appear to be the most critical paths.

You could useset _critical _range if your worst violation is small. However, this solution can
significantly increase synthesis runtimes. The recommended solution isto use

set _max_ti me_bor r owto limit the amount of borrowing so that the backside path just meets
timing and al of the violation is seen on the frontside path. The exact command to useisgivenin
the next section.

2.3 Impact of 1deal Clocks

Asthe reader may recall, when an ideal clock is used, al clock endpoints are assumed to have
perfect skew, but the clock uncertainty is subtracted to account for skew. With the gated clock
circuit, you can see in Figure 2 that the clock to the latch and the NAND gate will be early when
compared to the clock of the flip-flops. Thus, paths ending at these latches will have a reduced
cycle time and require tighter timing than normal paths do.

The above problem does not impact the clock glitch hold check, since this path is a 0-cycle path.
However, it doesimpact the setup time optimization since by default, the tool will optimize for a
full cycle, not areduced cycle.

The recommended workaround for this problem again usesset _max_t i me_bor r owto limit the
amount of time that can be shifted to the frontside path to account for this reduced cycle time.
Combining this solution with the previous solution for the split paths gives the following
command:

set _max_tine_borrow [expr $phase - $unc - $cl kbufdel ay - $dqdel ay] \
[get _clock $cl k]

Where:

SNUG Boston 2002 5 Successful Gated Clocking

Administrator
高亮

Administrator
高亮

Administrator
高亮

$phase isthe phase time of the negative phase of the clock.

$unc isthe clock uncertainty at the latches

$cl kbuf del ay isthe propagation delay for the posedge of the clock through clock buffering
that is downstream from the gating element, (including delay through the gating element)

$dgdel ay isthe propagation delay through the latch.

The phase time available for borrowing is reduced by three factors. First, clock uncertainty: there
isstill uncertainty about when the clock will arrive at the NAND gate, although this uncertainty
may be less than the full-chip uncertainty. Second, the clock buffer delay: this factor is applied
due to the early clock effect described in this section. Third, the latch D->Q propagation delay:
this factor must be included because the delay through the latch itself isincluded in the backside
path and is not available for borrowing into the frontside path.

The above command forces synthesisto see the backside path just meet timing. At the same time,
it forces the frontside path to use all the available time in the reduced cycle.

2.4 Setup Time Check Reporting

One further ramification of the splitting of the gating path into frontside and backside pathsis that
the setup time check appears at first glance to be incorrect. The following shows areport from
DesignCompiler for a sample backside setup clock gating check.

Startpoint: U gate_ph2 (negative |evel-sensitive latch clocked by cl k)
Endpoint: U gclk_n (gating element for clock clk)

Path Group: clk

Pat h Type: nmax

Poi nt I ncr Pat h
clock clk (fall edge) 50. 00 50. 00
cl ock network del ay (propagated) 12.00 62. 00
time given to startpoint 21.00 83. 00
U gat e_ph2/ D (LATCHN) 0. 00 83.00 r
U gat e_ph2/ Q (LATCHN) 20.00 * 103.00 r
U gcl k_n/ A (NAND2) 0.00 * 103.00 r
data arrival tine 103. 00
clock clk (rise edge) 100. 00 100. 00
cl ock network del ay (propagated) 10. 00 110. 00
cl ock uncertainty -0.20 109. 80
U _gcl k_n/ B (NAND2) 0. 00 109.80 r
clock gating setup time 0. 00 109. 80
data required time 109. 80
data required time 109. 80
data arrival tine -103. 00
slack (MET) 6. 80

This report shows the data path beginning at the falling edge of the latch clock. Aswas described
earlier, the correct setup analysis must start from the positive edge of the clock and propagate

SNUG Boston 2002 6 Successful Gated Clocking

Administrator
高亮

through the gating logic and then through the latch isif it were transparent. In fact, thisiswhat the
tool isdoing. The following listing shows the report for the associated frontside latch setup path.

Startpoint: U.internal _sigl(rising edge-triggered flip-flop clocked by clk)
Endpoi nt: U gate ph2 (negative |level-sensitive |atch clocked by clk)

Path Group: clk

Pat h Type: max

Poi nt I ncr Pat h
clock clk (rise edge) 0. 00 0. 00
cl ock network del ay (propagated) 10. 00 10. 00
U internal sigl/ CLK (DFF) 0. 00 10.00 r
U internal _sigl/ Q (DFF) 3.00 * 13.00 f
Uinternal _sig3/Y (INV) 70.00 * 83.00 r
U gat e_ph2/ D (LATCHN) 0.00 * 83.00 r
data arrival tine 83. 00
clock clk (fall edge) 50. 00 50. 00
cl ock network del ay (propagated) 12.00 62. 00
U gat e_ph2/ GN (LATCHN) 0. 00 62.00 f
time borrowed from endpoint 21.00 83. 00
data required time 83. 00
data required time 83. 00
data arrival tine -83.00
slack (MET) 0. 00

As can be seen, this path doesin fact start from the positive edge of the clock and arrives at the
input to the latch at time T=83. The backside analysis reproduces this path timing and shows time
T=83 at the latch input. It then propagates timing through the open latch correctly to the NAND
gate. The tool does agood job of obfuscating the true analysis, but it does in fact time the correct
path.

3.0 Gated Clocksand Primetime STA

Primetime uses similar algorithms to its synthesis brethren for analyzing clock glitches. Again,
these checks have to be enabled, since they are disabled by default:

set _cl ock_gating_check -setup $setup_val -hold $hol d_val

More importantly, the problems addressed during synthesis must also be addressed during STA:
» STA does not have the analysis problem associated with ideal clocks aslong as STA isrun
with detailed actual clock network delays.

» STA does incorrectly divide the clock gate path into two separate paths, thus obscuring
potential critical paths.

» STA hasasimilar reporting deficiency for clock glitch setup checks. However, as was true for

SNUG Boston 2002 7 Successful Gated Clocking

Administrator
高亮

synthesis, STA does time the correct paths.

The problem in the second bullet must be addressed differently for STA than it was for synthesis.
In synthesis, we used estimated for clock timing. With STA, we have actual net delays, and so we
can correct the borrowing for each latch individually to be 100% accurate. However, the spirit of
the workaround isthe same: useset _max_t i ne_bor r owto alow just enough time on the
backside path for glitch-free operation while forcing all available slack to the frontside path. Here
isthe TCL code to use: (line numbering added for clarity)

1: set timng_include_available borrow.in_slack true

2: set paths [get _tim ng paths -group **clock gating defaul t** \
-max_pat hs 10000]

3: foreach_in_collection path $paths {

4. set slack [get_attribute $path slack]

5: set tb [get_attribute $path tinme_lent_to_startpoint]

6: set stpt [get_attribute $path startpoint]

7 set _max_tine_borrow [expr $tb + $slack] $stpt

8

L)

Asthe reader may recall, by default, Primetime will only borrow enough time to exactly meet
timing. Thus, while alatch path may have lots of slack on the backside, the frontside is normally
reported as having 0 slack. From the timing reports, this makesit difficult to seeif the path
actually has 0 dlack, or if it has positive slack that is just not being reported. The command on
linel allows Primetime to report positive slack for those paths that could borrow more time. This
is done because we are going to push slack to the frontside and we want it to report positive dack
instead of O slack.

After line2, $pat hs will contain a collection of al the clock gating paths. We will
set _max_ti me_borr owon each of these paths individually.

We want to push all slack from the backside clock _gating check to the frontside logic path. The
commands inside the loop get the backside slack and the time that was borrowed in order to get
thisresult. Then, it adjusts the maximum borrow time of the frontside path according to the slack.
Thus, if the clock gating check was failing, this will reduce the available borrow time so that it
will pass. If the backside path was passing, it makes all of this dack available to the frontside
path. Accurate failures will now be lumped onto the frontside path.

4.0 Gated clocksand ATPG

ATPG is amost always one of the biggest concerns for ASIC designers when using gated clocks.
In redlity, it is not adifficult problem to solve. It breaks down into two parts- enabling scan
testing, and optimizing ATPG results.

4.1 Enabling Scan Testing

The most important thing isto be able to run scan tests. For this, the scan chain must be clocked
when it is being shifted (when scan_enabl e is asserted). The easiest way to assure thisisto
disable al gating elements when scan_enabl e is asserted. This amounts to an OR gate on the
GATE input, basically forcing GATE on when scan_enabl e is asserted.

SNUG Boston 2002 8 Successful Gated Clocking

This OR gate can be placed in front of the latch or behind the latch. If it isin front, then it looks
just like any other logic in front of the latch. If it is behind the latch, then there is one benefit and
one penalty. The benefit isthat it adds extra hold time margin for the clock glitch hold check. It
does this by delaying the data signal, which helps the clock win the race.

The penalty for putting the OR gate behind the latch is that the scan_enable signal must then be
stable over phasel of the clock, since it does not go through the latch. In practice thisis not
difficult to guarantee. This should not impact performance, since scan isonly run at relatively
slow speed.

NOTE: The OR gate itself does impact the setup path, but thisis unavoidable. The choice of its
location in front of or behind the latch has no effect on the setup path, since during setup analysis
the latch is open and the OR gate will be in the path no matter which location is chosen.

4.2 Optimizing ATPG Results

Once you have forced clocks to run during scan shifting, the degree of coverage achieved is
largely dependent on your ATPG tool. Popular ATPG tools can handle gated clock circuits. This
means that they can properly model an unclocked flop and generate patterns which can detect
faultsin the gating logic.

Using gated clocks does introduce one ATPG untestable fault: stuck-at-0 on the latch enable
input, GN. Since the latch isincluded purely for timing reasons, if it is stuck open, then the circuit
may still functionally pass, depending on timing. Thisisinherently untestable by scan test
patterns. However, since the latch is needed to guarantee hold time, it is a zero-cycle path which
may fail when the gate signal changes values early in acycle. This makes faults of this nature
more likely to be detectable during slower-speed operation. Timing analysis can be run to prove
which faults will be detected and which will not affect proper operation of the circuit.

Evenif your scan tool does not support gated clocking, there isaworkaround. You can replace al
registers that use gated clocking with the recirculating MUX circuit just for ATPG. This
workaround relies on the fact that the circuit shown in Figure 1 is functionally equivalent to the
gated clocking circuit. Patterns which run on the recirculating MUX will also run on the gated
clock circuit. This solution is not as accurate as using a more advanced ATPG tool which directly
supports gated clocking, but it will generate legal patterns with decent coverage, if not perfect
coverage.

5.0 Gated Clocks & CTStools

For some reason, most mainstream clock tree synthesistools are relatively primitive and have
trouble achieving good skew even with vanillanon-gated clock trees. Asone might imagine, there
will also be limitations when using a gated clock tree. Nonethel ess, this section describes several
guidelinesto follow. If your CTS tool can support all of these guidelines, you are home free. If it
cannot follow any of them, give up and do not use gated clocks. For most design teams, their CTS
tool will be somewhere in between these two extremes. Success has been achieved using popular
CTStools and alittle intelligent scripting.

SNUG Boston 2002 9 Successful Gated Clocking

Do Not Skew-match the Latch or NAND gate clock endpointswith the Flops. Most CTS
tools will automatically assume all clock endpoints should be skew-matched against all others.
Thisis not true for the clock gating circuit. The latch clock and the NAND gate clock will
necessarily be earlier than the flip-flop clocks and should not be skew-matched together.

Do Skew-match Latch and NAND gate clock endpoints against each other. The previousrule
is not meant to allow poor skew on the gating element clocks. You must still achieve good skew
on these endpoints, when taken as their own group.

Do Skew-match the gated flops with un-gated flops. Most designs using gated clocks will have
some logic which is not gated. Make sure that the CTS tool skew matches all of the flops: gated
and non-gated.

Place the Latch and the NAND gate close together. These two cells need to have the same
clock and have well-controlled delays on the nets between them. Placing them close together
helps to achieve these goals.

Route the Latch and the NAND gate on the same clock Subnet. There needsto be very tightly
controlled skew between these two cells. Achieving thisis most easily accomplished by
connecting these two cells to the same physical wire.

Makethe Clock Gating circuit the leaf level Clock Driver. As stated previously, the latch
clock is earlier than the clock to the flip-flops. How early it is may directly impact the maximum
frequency of the design. Thus, the clock gating circuit wantsto be at the leaf level of the clock
tree. In other words, there should be an absolute minimum of clock buffering after the NAND
gate. Thisruleimplies that the entire clock gating circuit should be duplicated, not just the
downstream buffers.

6.0 Gated Clocks& Cedll Libraries

Now that you have read and understood the previous pitfalls, workarounds, and suggestions, there
isone final suggestion which can solve many of the above problems all at the sametime. If your
standard cell library has afew strategic cells designed for clock gating, many of the previously
documented problems go away. The cells required can be divided into two groups- the front-end
gating cell and the backend clock driver.

The front-end gating cell is comprised of the latch and the NAND gate. In addition, to help ATPG,

weinclude an OR gate for enabling scan shifting. Figure 5 below shows the schematic for this, the
GCK cell:

SNUG Boston 2002 10 Successful Gated Clocking

Figure5. GCK Cdll

|

: o GCLK_N
CLK | (R -

|

This cell must be designed such that it never generates clock glitches. It would have the following
timing arcs:

» Setup and hold time requirements at the GATE input relative to the positive edge of CLK.
» Setup time requirement at the SCAN_ENABLE input relative to the positive edge of CLK.
* Hold time requirement at the SCAN_ENABLE input relative to the negative edge of CLK.
» Delay from positive edge of CLK to the negative edge of GCLK_N.

» Delay from negative edge of CLK to the positive edge of GCLK_N.

The backend cell isaplain inverter used to invert GCLK_N to GCLK and drive downstream flip-
flops. This cell should have alarge variety of drive strengths, since the drive strength selections
will largely determine how well skew can be matched. Furthermore, all of the backend cells
should be the same size and have the same 10 pin locations. This effectively meansthat al cells
will be the size of the largest cell. The advantage of thisisthat it makesfor easy swapping of these
cells for improving clock skew. Since there are relatively few of these cellsin the design, their
size haslittle effect on overall chip size.

By having these two types of cells, you will see the following benefits:
» Clock gating checks are not necessary in synthesisand STA, since the clock is guaranteed to be

glitch free.

» Thefrontside path is seen as aregular cycle path by synthesis and STA due to the posedge
requirements on the gate signal.

» Theideal clock problem in synthesis can be addressed through a semi-customizeable synthesis
model for the front-end gating cell. You can artificially increase the setup time requirement by the
amount of clock insertion delay, thus squeezing the frontside path into a reduced cycle.

e Scantesting is enabled because the gating cell is always enabled when SCAN_ENABLE is
asserted.

SNUG Boston 2002 11 Successful Gated Clocking

Asyou can see, these simple cells greatly simplify many of the problems inherent to clock gating.

7.0 Conclusions and Recommendations

Ten years ago, virtually no mainstream A SIC design tools supported gated clocking. Now,
Synopsys and other EDA companies have begun to address this design style. This paper showed
how to successfully navigate various stages of chip design to successfully integrate gated clocks
with your design.

While most tools do not by default do the correct thing, they can be directed to the correct
operation by afew intelligent scripts. Furthermore, afew strategic standard cells can aso go a
long way toward alleviating the remaining tool limitations. Even though manual work is still
required, the benefits of gated clocking to performance, area, and power are well worth the effort
needed to implement them successfully.

8.0 Acknowledgments

It was Soumya Banerjee who suggested that my work on clock gating might be useful to SNUG
members.

Copyright(r) 2002, MIPS Technologies, Inc. All rights reserved.

SNUG Boston 2002 12 Successful Gated Clocking

